
Installation Instructions and Homeowner's Manual

Multi-position

Electric furnace

240 VAC POWER SUPPLY

Variable speed motor (ECM)

Models: OFE15000GR-VV OFE18000GR-VV OFE23000GR-1HVV OFE27000GR-1HVV

INSTALLER / SERVICE TECHNICIAN:

USE THE INFORMATION IN THIS MANUAL FOR THE INSTALLATION AND SERVICING OF THE FURNACE AND KEEP THE DOCUMENT NEAR THE UNIT FOR FUTURE REFERENCE.

HOMEOWNER:

PLEASE KEEP THIS MANUAL NEAR THE FURNACE FOR FUTURE REFERENCE.

<u>Caution:</u> Do not tamper with the unit or its controls. Call a qualified service technician.

Manufactured by: Industries Dettson inc. **Subsidiary of Groupe Ouellet Canada Inc.** 3400, boulevard Industriel Sherbrooke, Québec - Canada J1L 1V8

www.ouellet.com

1 800 463-7043

X40212 Rev. A 2011-10-15 Printed in Canada

TABLE OF CONTENTS

1 SAFETY REGULATIONS	3
1.1 SAFETY LABELING AND WARNING SIGNS	3
2 INSTALLATION	3
2.1 POSITIONING THE FURNACE 2.2 CLEARANCE TO COMBUSTIBLE MATERIAL 2.3 CONFIGURATIONS 2.4 ELECTRICAL SYSTEM 2.5 INSTALLATION OF THE THERMOSTAT 2.6 SUPPLY AIR ADJUSTMENTS AND OTHER BLOWER SETTINGS 2.7 INSTALLATION OF ACCESSORIES	
3 OPERATION	
3.1 START-UP	8 9
4 MAINTENANCE	10
4.1 AIR FILTER4.2 MOTOR LUBRICATION	10
5 INFORMATION	11
6 WARRANTY	11
TABLES AND FIGURES	
FIGURE 1 - CONFIGURATION, UPFLOW INSTALLATION FIGURE 2 - CONFIGURATION, DOWNFLOW INSTALLATION FIGURE 3 - CONFIGURATION, HORIZONTAL INSTALLATION FIGURE 4 - FAN CONTROL BOARD	
TABLE 4 AURT LOW (OF M) MODELO WITH 1.0 TH MOTOR	

SAFETY REGULATIONS

1.1 SAFETY LABELING AND WARNING SIGNS

The words **DANGER, WARNING** and **CAUTION** are used to identify the levels of seriousness of certain hazards. It is important that you understand their meaning. You will notice these words in the manual as follows:

DANGER

Immediate hazards that <u>WILL</u> result in death, serious bodily injury and/or property damage.

WARNING

Hazards or unsafe practices that CAN result in death, bodily injury and/or property damage.

CAUTION

Hazards or unsafe practices that <u>CAN</u> result in bodily injury and/or property damage.

1.2 IMPORTANT INFORMATION

WARNING

Non-observance of the safety regulations outlined in this manual will potentially lead to consequences resulting in death, serious bodily injury and/or property damage.

- a) It is the homeowner's responsibility to engage a qualified technician for the installation and subsequent servicing of this furnace;
- b) Do not use this furnace if any part of it was under water.
 Call a qualified service technician immediately to assess the damage and to replace all critical parts that were in contact with water;
- c) Do not store gasoline or any other flammable substances, such as paper, carton, etc. near the furnace;
- d) Never block or otherwise obstruct the filter and/or return air openings;
- e) Ask the technician installing your furnace to show and explain to you the following items:
 - i. The main disconnect switch or circuit breaker;
 - ii. The air filter and how to change it (check monthly and clean or replace if necessary);
- f) Before calling for service, be sure to have the information on page 11 of your manual close by in order to be able to provide the contractor with the required information, such as the model and serial numbers of the furnace.

WARNING

Installation and repairs performed by unqualified persons can result in hazards to them and to others. Installations must conform to local codes or, in the absence of such, to codes of the country having jurisdiction.

The information contained in this manual is intended for use by a qualified technician, familiar with safety procedures and who is equipped with the proper tools and test instruments.

Failure to carefully read and follow all instructions in this manual can result in death, bodily injury and/or property damage.

1.3 DANGER OF FREEZING

CAUTION

If your furnace is shut down during the cold weather season, water pipes may freeze, burst and cause serious water damage. Turn off the water supply and bleed the pipes.

If the heater is left unattended during the cold weather season, take the following precautions:

- a) Close the main water valve in the house and purge the pipes if possible. Open all the faucets in the house;
- b) Ask someone to frequently check the house during the cold weather season to make sure that there is sufficient heat to prevent the pipes from freezing. Tell this person to call an emergency number if required.

2 INSTALLATION

This furnace is a true multi-position unit, in that it will function in an upflow, downflow or horizontal configuration to the left or the right. Only a few modifications are required during installation to change from one position to another. The unit is shipped in the upflow configuration and instructions as to how to change to the other positions are included in this manual.

The unit requires a 240VAC power supply to the control panel, thermostat hook-up as shown on the wiring diagram and suitable air ductwork.

The louvers at air supply can be adjusted depending static pressure or desired airflow or temperature differential. To adjust the louvers, push green levers and engage tack to another hole. It is suggested to place both louvers at the same position to insure uniform air distribution through the elements.

All local and national code requirements governing the installation of central electric heating equipment, wiring and the flue connection MUST be followed. Some of the codes that may apply are:

ANSI/NFPA 70: National Electrical Code CSA C22.1 or CSA C22.10:

Canadian Electrical Code

Only the latest issues of the codes may be used.

2.1 POSITIONING THE FURNACE

WARNING

Fire and explosion hazard.

The furnace must be installed in a level position, never where it will slope toward the front.

Do not store or use gasoline or any other flammable substances near the furnace.

Non-observance of these instructions will potentially result in death, bodily injury and/or property damage.

CAUTION

This furnace is not watertight and is not designed for outdoor installation. It must be installed in such a manner as to protect its electrical components from water. Outdoor installation will lead to a hazardous electrical condition and to premature failure of the equipment.

If the furnace is installed in a basement or on a dirt floor, in a crawl space for example, it is recommended to install the unit on a cement base 2.5 cm to 5.0 cm (1" to 2") thick.

The unit must be installed in an area where the ambient and return air temperatures are above 15°C (60°F). In addition, the heater should also be located close to the center of the air distribution system.

2.2 CLEARANCES TO COMBUSTIBLE MATERIAL

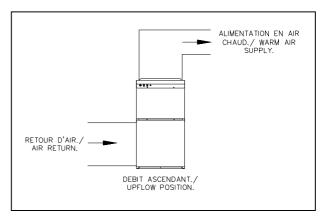
2.2.1. Heating unit

The furnace is approved for zero clearance to combustible material regardless of the heating capacity.

2.2.2. Supply air ducts

Ducts for furnaces with a heating capacity up to and including 20 kW, can be installed with a zero clearance to combustible material.

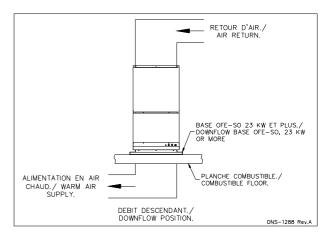
Ducts for furnaces of 23 kW or more must have a clearance of 25 mm (1") to combustible material for the first 0.9 m (36") of duct. Thereafter the clearance can be zero.


Units of 23 kW and up, installed in the downflow position must use an <u>OFE-SO downflow base</u>, which is especially designed for this purpose. It ensures that the required clearances are being adhered to.

2.3 CONFIGURATIONS

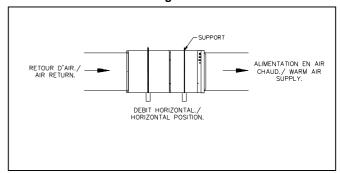
2.3.1. Upflow installation

The return air opening may be located on either side of the furnace. Care should be taken not to damage the wires inside, while cutting the opening. Install the filter rack supplied with the unit according to the instructions provided with it. It is also recommended to install the blower door before handling or moving the unit. Refer to Figure 1 for additional details.


Figure 1

2.3.2. Downflow installation

When the furnace is installed in the downflow position on a combustible floor, the clearances from combustibles materials must be adhered to. The downflow base OFE-SO can be used to ensure these clearances. Refer to Figure 2 and the installation instructions provided with the base.


Figure 2

2.3.3. Horizontal installation

When the furnace is installed in the horizontal position, either suspended or on a combustible floor with a choice of right or left discharge, the clearances from combustible material must be adhered to. Refer to Figure 3 for additional details.

Figure 3

2.4 ELECTRICAL SYSTEM

The **Unique** furnace is completely pre-wired and all field wiring must be connected to the terminal blocks on the unit. It requires a 240 volt, 2-wire power supply.

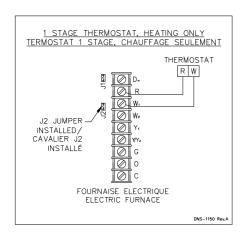
WARNING

Risk of fire.

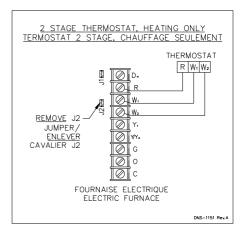
The conductor sizing must conform to the last edition of the local or national codes.

Failure to follow this rule can result in death, bodily injury and/or property damage.

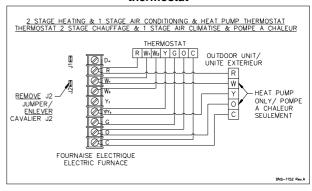
Power supply to the unit can be done using copper or aluminum wires. The wire size must be decided in accordance to unit power consumption, the over current protection type and capacity, the wire type and length, and the environment where the unit is installed. If an aluminum wire is used, other precautions must be taken to insure the conformity of the installation. In all cases, all the factors affecting the wire gauge must be considered and the installation codes followed.

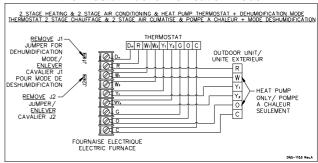

The exterior of the unit must have an uninterrupted ground to minimize the risk of bodily harm. A ground terminal is supplied with the control box for that purpose.

In the event that wires inside the unit require replacement, these must be copper wires only with same temperature rating as originals.


2.5 INSTALLATION OF THE THERMOSTAT

A thermostat must be installed to control the temperature of the area to be heated. Follow the instructions supplied with the thermostat. Install the thermostat on an interior wall in a location where it will not be subject to direct sun light, lamps, air diffusers, fireplaces, etc. Seal openings in walls to avoid air currents that may influence the operation of the thermostat. Also refer to the wiring diagrams provided with the heating/air conditioning unit. The connections must be made as indicated on the following diagrams and the electrical diagram, Figure 9, p.12.


1-stage thermostat, heating only


2-stage thermostat, heating only

2-stage heating & 1-stage air conditioning & heat pump thermostat

2-stage heating & 2-stage air conditioning & heat pump thermostat + dehumidification mode

2.5.1. Thermostat heat anticipator adjustment (if required)

Certain thermostats are equipped with a heat anticipator that must be adjusted according to the instructions supplied. This is to ensure that the heating mode is comfortable and economical.

Generally speaking, on a single stage thermostat, a reading of the current must be taken with an ammeter as follows:

- Move the anticipator to its highest setting, rendering it ineffective.
- Remove the wire from the "W1" terminal and connect an ammeter between the terminal and the wire.
- Call for heat by raising the set point on the thermostat and allow the furnace to run for 3 to 4 minutes to reach its peak output.
- 4) Once the current has stabilized, a reading should be taken and the anticipator adjusted to that value. If longer heating cycles are desired, the anticipator can be set to a higher value.

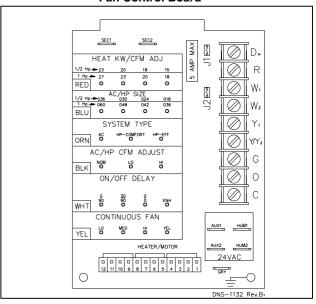
2.5.2. Ducts and filters

The ducts must be sized such a way as to accommodate the specified airflow and the available static pressure. Refer to the applicable local and/or national installation codes.

Insulate the ducts that lead through non-heated areas. Use flexible supply and return air connectors to avoid the transmission of vibration. To make the unit run even quieter, the installer should:

- Use two elbows between each outlet and the supply and return air plenum;
- Cover the vertical sections of the supply and return air duct with soundproofing material;
- 3) Use baffles in short radius elbows;
- 4) Use flexible hangers to suspend the ducts.

The **Unique** furnace is equipped with a filter frame for the blower compartment. It must be installed on the outside of one of the three sides or the bottom of the furnace. Once the location of the installation has been determined, use the four square knockouts for ease of cutting the opening.


A heat pump or an air conditioner can be added to this furnace, in either the supply or return air duct. Carefully follow the instructions provided with these appliances to ensure proper installation and hook-up to the electric furnace. Refrigerant and drainage pipes must in no way hinder access to the furnace panels.

2.6 SUPPLY AIR ADJUSTMENTS AND OTHER BLOWER SETTINGS

Fan Control Board taps are used by the installer to configure a system. The ECM motor uses the selected taps to modify its operation to a pre-programmed table of airflows (Refer to Table 3 and Table 4). Airflows are based on system size or mode of operation and those airflows are modified in response to thermostat inputs.

The **Unique** electric furnace must be configured to operate properly with system components with which it is installed. To successfully configure a basic system (see information printed on circuit board label located next to select pins), move the 6 select wires to the pins which match the components used. (Refer to Figure 4 below)

Figure 4
Fan Control Board

2.6.1. HEAT KW/CFM adjustment

Installer must verify (factory set) the electric heat airflow adjustment required for kW size heater installed.

The select pins are marked 20, 18, 15 (for ½ HP ECM motor unit) and 27, 23 (for 1.0 HP ECM motor unit). Refer to the unit wiring diagram and select the pin for the heater size being used (Refer to Figures 4 and 9).

The airflow must be large enough for safe and continuous operation. (Refer to Table 3 and 4 for airflow delivery CFM).

2.6.2. AC/HP size

Select System Size Installed

The factory setting for air conditioner or heat pump size is the largest outdoor unit that can be used with the furnace. Installer needs to select air conditioner or heat pump size to ensure that airflow delivered falls within proper range for the size unit installed.

The select pins are marked 030, 024, 018 for furnace equipped with $\frac{1}{2}$ HP ECM motor and 060, 048 for furnace equipped with 1.0 HP ECM motor. Refer to the unit wiring diagram and select the pin for the outdoor unit size being used (Refer to Figures 4 and 9).

2.6.3. System type

Select System Type Installed AC or HP

The type of system must be selected:

- AC Air Conditioner provides approximately 400 CFM per ton for greater efficiency and humidity control with the AC/HP CFM ADJUST set to the nominal (NOM) tap. To achieve more or less than 400 CFM per ton, move tap to (HI) or (LO) position respectively. Refer to appropriate airflow tables for exact CFM setting.
- 2. HP-COMFORT Heat Pump Comfort provides approximately 350 CFM per ton for higher than normal heating air delivery temperature.
- HP-EFF Heat Pump Efficiency provides same airflow for heating and cooling modes to increase overall HP efficiency; approximately 400 CFM per ton with the AC/HP CFM ADJUST set to the nominal (NOM) tap.

The factory setting is AC (Refer to Figures 4 and 9).

2.6.4. AC/HP CFM adjust

Select Medium, Low, or High Airflow

To provide airflow at rates described above, the AC/HP ADJUST select is factory set to the nominal (NOM) tap. The adjust selections HI/LO will regulate airflow supplied for all operational modes.

HI provides 10% airflow over nominal unit size selected and LO provides 10% airflow below nominal unit size selected.

Adjust selection options are provided to adjust airflow supplied to meet individual installation needs for such thins as noise, comfort, and humidity removal. (Refer to Figures 4 and 9)

2.6.5. ON/OFF delay

Select desired time delay profile

NOTE: Delay selections are active in cooling and heat pump heating modes only. Electric heating modes have a one (1) minute OFF delay at 50% airflow and zero (0) ON delay programmed into the ECM motor that cannot be overridden.

Four (4) motor operation delay profiles are provided to customize and enhance system operation. (Refer to Figures 4 and 9)

Selection options are:

- 0/90: No ON delay and 90 second OFF delay at 100% airflow (factory setting).
- 30/90: 30 second ON delay with no airflow and 90 second OFF delay at 100% airflow profile. Used when it is desirable to allow system coils time to heat-up/cool-down in conjunction with the airflow.
- 3. 0/0: No delay option. Used for servicing unit or when a thermostat is utilized to perform delay functions.
- 4. ENH: enhanced selection provides a 30 second ON delay with no airflow followed by 150 seconds at 70% airflow, and no OFF delay for added comfort. This profile will minimize cold blow in heat pump operation and could enhance system efficiency.

2.6.6. Continuous fan

Select desired fan speed when thermostat is set on continuous fan. (Refer to figure 4 and 9)

NOTE: If installed with a two-stage outdoor unit, do not select HI speed continuous fan. If HI is selected, low stage compression will also run HI fan speed possibly resulting in insufficient dehumidification.

- 1. LO speed factory setting, 50% cooling mode airflow.
- MED speed move connector to MED, 80% cooling mode airflow.
- HI speed move connector to HI, 100% cooling mode airflow.

2.6.7. Low-voltage circuit

Fusing and Reference

The low-voltage circuit is fused by a board-mounted 5-amp automotive fuse placed in series with the transformer SEC2 and the R circuit. The C circuit of the transformer is referenced to chassis ground through a printed circuit run at SEC1 connected to metal standoff marked with ground symbol.

2.6.8. Basic furnace configuration

The following basic configuration of the furnace will provide ARI rated performance of an air conditioner:

- HEAT KW/CFM Select the heater range for the size electric heater installed.
- 2. AC/HP SIZE Select system size installed.
- 3. SYSTEM TYPE Select system type AC
- 4. AC/HP CFM ADJUST Select NOM.
- 5. ON/OFF DELAY Select 0/90 profile.
- CONTINUOUS FAN Select desired fan speed when thermostat is set to continuous fan.

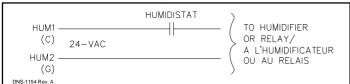
The following basic configuration of the furnace will provide ARI rated performance of a heat pump:

- HEAT KW/CFM Select the heater range for the size electric heater installed.
- 2. AC/HP SIZE Select system size installed.
- 3. SYSTEM TYPE Select system type HP-EFF
- 4. AC/HP CFM ADJUST Select NOM.
- 5. ON/OFF DELAY Select 0/90 profile.
- CONTINUOUS FAN Select desired fan speed when thermostat is set to continuous fan.

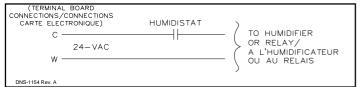
2.7 INSTALLATION OF ACCESSORIES

WARNING

Electrical shock hazard.

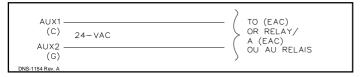

Turn OFF electrical power at the fuse box or service panel before making any electrical connections and ensure a proper ground connection is made before connecting line voltage.

Failure to do so can result in death or bodily injury.


2.7.1. Humidifier and humidistat connection

Fan Control Board terminals HUM1 (directly connected internally to C on terminal block) and HUM2 (directly connected internally to G on terminal block) are provided for direct connections to the low-voltage control of a humidifier through a standard humidistat (refer to Figure 5). These terminals are energized with 24 VAC when G thermostat signal is present. Alternately, the 24 VAC signal may be sourced from the W1 and C terminal block connections when electric heaters are used as a primary heating source (refer to Figure 6).

Figure 5


Figure 6

2.7.2. Electronic Air Cleaner (EAC) connections

Fan Control Board terminals AUX1 (directly connected internally to C on terminal block) and AUX2 (directly connected internally to G on terminal block) are provided for direct connections to the low-voltage control of an electronic air cleaner (EAC). These terminals are energized with 24 VAC when G thermostat signal is present (refer to Figure 7).

Figure 7

2.7.3. Dehumidify capability with standard humidistat connection

Latent capacities for systems using this unit are better than average systems. If increased latent capacity is an application requirement, the field wiring terminal block provides a connection terminal (DH) for use of a standard humidistat. The furnace control will detect the humidistat contact opening on increasing humidity and reduce its airflow to approximately 80% of nominal cooling mode airflow. This reduction will increase the system latent capacity until the humidity falls to a level which causes the humidistat to close its contacts.

2.7.4. Use of a heat pump

When using a heat pump, a thermostat with dial fuel option or a fossil fuel kit is required that prevents the operation of the electric elements and the heat pump at the same time. Refer to the instructions provided with the thermostat or the "Fossil Fuel" kit for the proper wiring of the furnace and the heat pump.

The simultaneous operation of the electric elements and the heat pump will cause overheating of either unit. The safety controls of the appliances will shut down the elements or heat pump, since they are not designed to function in this fashion.

3 OPERATION

3.1 START-UP

Before starting up the unit, be sure to check that the following items are in compliance:

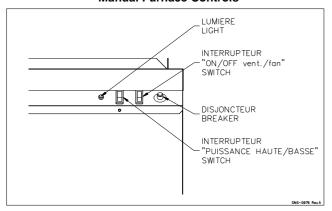
- 1) The electrical installation and ventilation;
- The blower access door is in place and the blower rail locking screws are well tightened;
- The blower speed adjustments for heating and air conditioning are appropriate and according to the specifications in this manual;
- 4) The thermostat of the room is in the heating mode and is set higher than the ambient temperature.
- The breakers on front panel are closed (green indicator)

To start the unit, turn the main electrical switch on.

3.2 USE OF MANUAL FURNACE CONTROLS

When there is a demand for heat, the pilot light ("L-1") comes on. Refer to the wiring diagram.

When the "HI/LO" switch is put into the "LO" position, it will shut down approximately half the elements.


However, it is important to put the switch back to the "HI" position during the winter months to ensure adequate heating.

Also, this switch must remain in the "HI" position when a 2-stage or outdoor thermostat is used to control the electric elements of the second stage. Refer to the diagram in Section 2.5 (Installation of the thermostat).

The "ON/OFF Ventilateur/FAN" switch engages the blower in the continuous speed mode. This will filter the air and provide for better air distribution in the building.

The circuit breaker is there to protect the motor and control circuit conductors. If the unit does not function, press the circuit breaker button to see if it may have disengaged due to a power surge. If the breaker has to be pressed again, the unit must be checked by a qualified service technician.

FIGURE 8 Manual Furnace Controls

3.3 OPERATING SEQUENCE

This unit is designed to provide the required airflow in order to match with any of four (4) different electronic heat capacity, air conditioner or heat pump outdoor unit sizes (see Tables 3 and 4 for CFM values).

Also, the blower motor is a true variable speed motor designed to deliver constant CFM. Constant CFM is valid for systems with total external static pressure between 0.1 and 0.7 inches water column.

Refer also to Table 1 for sequence of operation summary, depending on thermostat inputs and types.

3.3.1. Continuous fan

- Thermostat closes circuit R to G.
- Blower runs at continuous fan airflow.

3.3.2. Cooling mode - single stage

 If indoor temperature is above temperature set point and humidity is below humidity set point, thermostat closes circuits R to G, R to Y/Y2 and R to O.

NOTE: For single stage systems, do not use the Y1 terminal.

• Furnace delivers single stage cooling airflow.

3.3.3. Cooling mode – two stage

- First stage (low) cooling: Thermostat closes circuits R to G, R to O, and R to Y1.
- · Furnace delivers low stage cooling airflow.
- Second stage (high) cooling: Thermostat closes circuits R to G, R to O, R to Y1 and R to Y/Y2.
- Furnace delivers high stage cooling airflow.

3.3.4. Cooling mode - dehumidification

NOTE: Remove jumper « J1 » on board to activate this function. (Refer to Figures 4 and 9)

- If indoor temperature is above temperature set point and humidity is above humidity set point, thermostat closes circuits R to G, R to Y/Y2 and R to O and humidistat opens circuit R to DH.
- The furnace delivers airflow which is approximately 80% of the nominal cooling airflow to increase the latent capacity of the system.

3.3.5. Electric heat heating mode - 1 stage

- Thermostat closes circuit R to W1 or W2.
- Furnace delivers the selected electric heat airflow and maximum heating capacity is powered starting the heating elements in sequence with a delay of 8 seconds between each.

3.3.6. Electric heat heating mode - 2 stage

NOTE: Remove jumper « J2 » on board to activate this function. (Refer to Figures 4 and 9)

- First stage heating: thermostat closes circuit R to W1.
- Furnace delivers low stage heating airflow (50% of nominal electric heating airflow) and approximately half of the heating capacity is powered starting the heating elements in sequence with a delay of 8 seconds between each.
- Second stage heating: thermostat closes circuit R to W2.
- Furnace delivers high stage heating airflow (100% of nominal electric heating airflow) and maximum heating capacity is powered starting the heating elements in sequence with a delay of 8 seconds between each.

3.3.7. Heat pump heating mode – single stage

Thermostat closes circuits R to G and R to Y/Y2.

NOTE: For single stage systems, do not use the Y1 terminal.

Furnace delivers single stage heat pump heating airflow.

3.3.8. Heat pump heating mode – two stage

- First stage (low) heating: Thermostat closes circuits R to G and R to Y1.
- Furnace delivers low stage heating airflow.
- Second stage (high) heating: Thermostat closes R to G, R to Y1 and R to Y/Y2.
- Furnace delivers high stage heating airflow.

A

WARNING

ELECTRICAL SHOCK or UNIT DAMAGE HAZARD

Failure to carefully read and follow this WARNING could result in equipment malfunction, property damage, personal injury and/or death.

Disconnect power to unit before removing or replacing connectors or servicing motor. Wait at least five (5) minutes after disconnecting power before handling.

3.4 AIRFLOW VERIFICATION

Verify the airflow by taking readings of the following points, while the elements are in the heating mode:

- Total amperage of all the heating elements;
- Voltage at the furnace;
- Supply air temperature. The point of the reading must not be affected by radiant heat from the elements;
- Return air temperature.

From these readings, one can arrive at an approximate calculation of the average airflow. To do that, the following formula should be used:

Liter/s= 0.82 x amps. x volts
----Diff. temperature °C

CFM = 3.1 x amps. x volts
----Diff. temperature °F

3.4.1. Supply Air Temperature Rise Test

- Operate the unit at maximum power for at least 10 minutes;
- 2) Measure the air temperature in the return air plenum;
- 3) Measuring the air temperature in the largest trunk coming off the supply air plenum, just outside the range of radiant heat from the heat exchanger. 0.3 m (12") from the plenum of the main take-off is usually sufficient:
- 4) The temperature rise is calculated by subtracting the return air temperature from the supply air temperature.

If the temperature rise exceeds the temperature specified (\pm 5°F) in Table 2, move the "AC/HP CFM ADJUST" black wire to high (HI) position. If the excessive temperature rise cannot be reduced by increasing fan speed, investigate for ductwork obstructions or dirty and improper air filter.

CAUTION

It is important to check the airflow and to ascertain that the unit does not operate above the temperatures specified in the Technical Specifications (Table 2). This is particularly important if a cooling coil or a heat pump has been installed in the ducts.

Hi-Limit thermal protectors should never need to engage during the normal functioning of the appliance. They are strictly designed to engage during the improper functioning of the blower or when the filter was improperly maintained.

3.4.2. High limit verification

After operating the furnace for at least 15 minutes, restrict the return air supply by blocking the filters or the return air register and allow the furnace to shut off on High Limit. The electric heaters must deactivate themselves one by one before the warm air temperature exceeds 200°F

Remove the obstruction and the elements should restart after a few minutes.

4 MAINTENANCE

WARNING

Electrical shock hazard.

Turn OFF power to the furnace before any disassembly or servicing.

Failure to do so can result in death, bodily injury and/or property damage.

Preventive maintenance is the best way to avoid unnecessary expense and inconvenience. Have your heating system inspected by a qualified service technician at regular intervals. Do not attempt to repair the furnace or its controls. Call a qualified service technician.

Before calling for repair service, check the following points:

- 1) Check fuses or the circuit breaker;
- Check if the 15 A circuit breaker on the furnace is disengaged;
- 3) Check the 5 A fuse on the control board;
- 4) Set the thermostat higher than room temperature. If the unit does not start up, cut the power and call la qualified service technician.

When calling for service or ordering a replacement part, specify the model and serial number of your appliance.

4.1 AIR FILTER

The filter supplied with the unit is the disposable type and should be replaced twice a year. The presence of animal hair, dust, etc. may necessitate more frequent changes. Dirty filters have an adverse effect on the performance of the central heating system.

4.2 MOTOR LUBRICATION

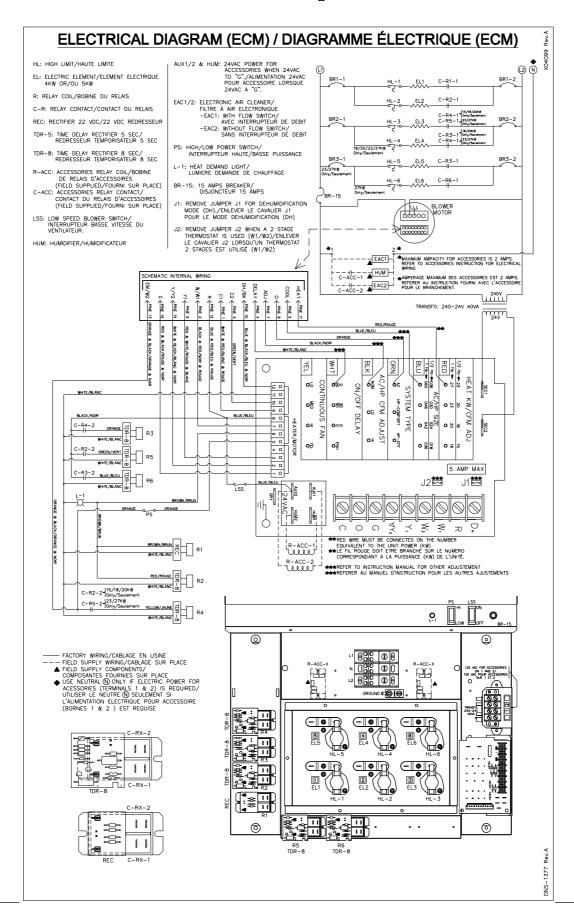
Do not lubricate the blower motor, since it is permanently lubricated.

5 INFORMATION

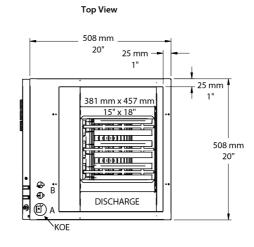
Model:	Serial number:	
Furnace installation date:		
Service telephone # - Day:	Night:	
Dealer name and address:		
START-UP RESULTS		
Voltage:		
Total current consumed by the elements:		
Supply air temperature:		
Return air temperature:		
Supply air duct static pressure:		
Return air duct static pressure:		
Total pressure:		
Calculated air flow:		
Current consumed by the blower motor:		
Current consumed by the accessories:		

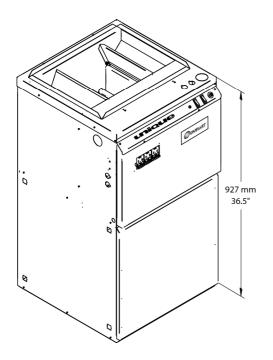
6 WARRANTY

LIMITED WARRANTY TO OWNER


The warranties herein set forth are in lieu of all other warranties expressed or implied and shall not apply to any accessory not part of the product. Ouellet Canada Inc. warrants its **Unique** electric furnace to the owner against defects in material and workmanship for a five (5) year period under normal use and services following date of purchase when proof of such is provided to seller. The obligation of Ouellet Canada Inc., under the terms of this warranty, shall be to supply a new part, or the repair of a defective part at the company's option with no cost to owner for the new or repaired part. Such parts are to be returned to the factory, or such other location as the company may designate at the owner's expense. This warranty does not obligate Ouellet Canada Inc. to bear the cost of labor in replacing any assembly, unit or component part thereof, nor does the company assume any liability for secondary charges, expenses for installing or removal, or any other consequential losses, freight or damages.

IN CASE OF PRODUCT FAILURE


It shall be the obligation of the owner or contractor to furnish to the company, within the designated warranty period the following information:


- 1. Model Number and serial number of product involved.
- 2. Complete description of the problem encountered with product.

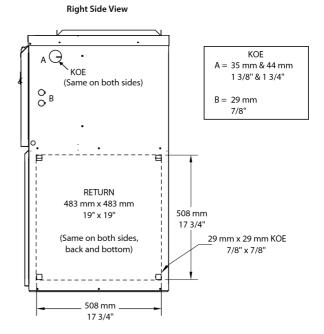

FIGURE 9 Electrical Diagram

FIGURE 10 Dimensions

TABLE 1 Sequence of operation

Mode	Thermostat to Control Board 24 VAC	Control State	Control Function			
	Electric Heat only					
Continous Fan	G	ON	Fan ON at the selected continous fan CFM			
(Fan switch ON)	-	OFF	Fan OFF			
Themostat calls for 1st stage Heat	W1 ▼	ON OFF	Fan ON at 50% of the selected Heat CFM, 1st stage of Heat ON** 1st stage of Heat OFF, Fan OFF			
T	14/4 0 14/0 =	ON	Fan ON at selected Heat CFM, 1st stage & 2nd stage of Heat ON**			
Themostat calls for 2nd stage Heat	W1 & W2 ▼	OFF	1st stage & 2nd stage of Heat OFF, Fan OFF			
		Coolir	ng 1 stage, with Electric Heat			
Continous Fan	G	ON	Fan ON at the selected continous fan CFM			
(Fan switch ON)	G	OFF	Fan OFF			
Themostat calls for 1st stage Heat	W1 ▼	ON	Fan ON at 50% of the selected Heat CFM, 1st stage of Heat ON**			
- The mediat came for fet diago from	,	OFF	1st stage of Heat OFF, Fan OFF			
Themostat calls for 2nd stage Heat	W1 & W2 ▼	ON OFF	Fan ON at selected Heat CFM, 1st stage & 2nd stage of Heat ON**			
		OFF	1st stage & 2nd stage of Heat OFF, Fan OFF Compressor ON, Fan ON after delays at selected Cooling CFM			
Themostat calls for Cooling	Y/Y2 & G	OFF	Compressor OFF, Fan OFF after selected cooling CFM Compressor OFF, Fan OFF after selected cooling delays			
Themostat calls for Cooling &		ON	Compressor ON, Fan ON after delays at 80% of the selected Cooling CFM			
Dehumidification	Y/Y2 & G & (DH)*	OFF	Compressor OFF, Fan OFF after selected cooling delays			
		Coolin	g 2 stages, with Electric Heat			
Continous Fan	_	ON	Fan ON at the selected continous fan CFM			
(Fan switch ON)	G	OFF	Fan OFF			
Themsetet calls for 1st stage Heat	W1 ▼	ON	Fan ON at 50% of the selected Heat CFM, 1st stage of Heat ON**			
Themostat calls for 1st stage Heat	VV I ▼	OFF	1st stage of Heat OFF, Fan OFF			
Themostat calls for 2nd stage Heat	W1 & W2 ▼	ON	Fan ON at selected Heat CFM, 1st stage & 2nd stage of Heat ON**			
Themselat dalie for 2nd diago Float	WI WILL Y	OFF	1st stage & 2nd stage of Heat OFF, Fan OFF			
Themostat calls for 1st stage Cooling	Y1 & G	ON	Compressor ON, Fan ON after delays at 80% of the selected Cooling CFM			
		OFF	Compressor OFF, Fan OFF after selected cooling delays			
Themostat calls for 2nd stage Cooling	Y/Y2 & Y1 & G	ON OFF	Compressor ON, Fan ON after delays at selected Cooling CFM Compressor OFF, Fan OFF after selected cooling delays			
Themostat calls for 2nd stage Cooling &		ON	Compressor ON, Fan ON after delays at 80% selected Cooling CFM			
Dehumidification	Y/Y2 & Y1 & G & (DH)*	OFF	Compressor OFF, Fan OFF after selected cooling delays			
		Heat pu	Imp 1 stage, with Electric Heat			
Continous Fan	0	ON	Fan ON at the selected continous fan CFM			
(Fan switch ON)	G	OFF	Fan OFF			
Themostat calls for Cooling	Y/Y2 & G & O	ON	Compressor ON, Fan ON after delays at selected Cooling CFM			
· ·	1/12 & G & O	OFF	Compressor OFF, Fan OFF after selected Cooling delays			
Themostat calls for Cooling &	Y/Y2 & G & O & (DH)*	ON	Compressor ON, Fan ON after delays at 80% of the selected Cooling CFM			
Dehumidification	,	OFF	Compressor OFF, Fan OFF after selected cooling delays			
Themostat calls for 1st stage Heat (Heat pump heating mode)	Y/Y2 & G	ON	Compressor ON, Fan ON after delays at selected Heat Pump CFM Compressor OFF, Fan OFF after selected Heat Pump delays			
Themostat calls for 2nd stage Heat		OFF ON				
(Electric heat) Δ	W1 & W2 ▼	OFF	Fan ON at selected Heat CFM, 1st stage & 2nd stage of Heat ON** 1st stage & 2nd stage of Heat OFF, Fan OFF			
(Eloutio Houl) E	(Electric fleat) A OFF 1st stage & 2nd stage of Heat OFF, Fan OFF Heat pump 2 stages, with Electric Heat					
Continue						
Continous fan (Fan switch ON)	G	ON OFF	Fan ON at the selected continous fan CFM Fan OFF			
		OFF	Compressor ON, Fan ON after delays at 80% of the selected Cooling CFM			
Themostat calls for 1st stage Cooling	Y1 & G & O	OFF	Compressor OFF, Fan OFF after selected cooling delays			
The second selle for O. J. J. O. "	VA/0.0.V/.0.0.0.0	ON	Compressor ON, Fan ON after delays at selected Cooling CFM			
Themostat calls for 2nd stage Cooling	Y/Y2 & Y1 & G & O	OFF	Compressor OFF, Fan OFF after selected cooling delays			
Themostat calls for 2nd stage Cooling &	Y/Y2 & Y1 & G & (DH)*	ON	Compressor ON, Fan ON after delays at 80% of the selected Cooling CFM			
Dehumidification	1/12 α 11 α Θ α (DΠ)	OFF	Compressor OFF, Fan OFF after selected cooling delays			
Themostat calls for 1st stage Heat	Y1 & G	ON	Compressor ON, Fan ON after delays at 80% of the selected Heat Pump CFM			
(Heat pump heating mode)		OFF	Compressor OFF, Fan OFF after selected Heat Pump delays			
Themostat calls for 2nd stage Heat	Y1 & Y/Y2 & G	ON	Compressor ON, Fan ON after delays at selected Heat Pump CFM			
(Heat pump heating mode)		OFF	Compressor OFF, Fan OFF after selected Heat Pump delays			
Themostat calls for 3rd stage Heat	W1 & W2	ON	Fan ON at selected Heat CFM, 1st stage & 2nd stage of Heat ON**			
(Electric Heat) ∆		OFF	1st stage & 2nd stage of Heat OFF, Fan OFF			

^{*} The 24 VAC is removed is remove from DH when there is a call for dehumidification

** Electric heat elements are controlled by relays with a delay sequence from Rectifier timer board on the relays

∆ The thermostat must provide Dual Fuel option or a Fossil Fuel kit must be used (electric heat elements & Heat pump must not run at the same time)

▼ Jumper J2 on the electronic board provide connection between W1 & W2. Remove it for 2 stage Electric Heat using a 2 stages thermostat.

TABLE 2 **Technical Specifications**

SPECIFICATIONS, SUP ELECTRIC FURNACE WITH ECM MOTOR					
RATINGS AND PERFORMANCE	SUPxx-E230V1 SUPxx			-E230V2	
Power second stage (Kw)	15	18	20	23	27
Power first stage (Kw)	10	9	10	13	17
Net capacity second stage (BTU/h)	51180	61420	68240	78480	92130
Heating temperature rise, second stage heating (F) 1	58	62	62	62	60
Heating temperature rise, first stage heating (F) 1	78	62	62	70	75
ELECTRICAL SYSTEM					
Volts - Hertz - Phase		2 v	wires 240 - 60	- 1	
Electrical element #1 (Kw)	5	4	5	4	4
Electrical element #2 (Kw)	5	5	5	5	5
Electrical element #3 (Kw)	5	4	5	4	4
Electrical element #4 (Kw)		5	5	5	4
Electrical element #5 (Kw)				5	5
Electrical element #6 (Kw)					5
Blower motor Consumption (Amp)	4.3	4.3	4.3	9.1	9.1
Heating Elements Consumption (Amp)	61	74	82	94	111
Total Consumption (Amp)	65.3	78.3	86.3	103.1	120.1
Circuit amperage (wire sizing) 2	82	98	108	130	150
Maximum size circuit breaker (Amp) ²	90	100	110	150	150
BLOWER DATA					
Motor (HP) / Type	1/2 HP / ECM 2.3 1 HP / ECM 2.3			CM 2.3	
Blower size	G10-8 or 100-8R GT12010 or 120-10T			or 120-10T	
GENERAL INFORMATION					
Overall dimensions (width x depth x height)	20" x 20" x 36.5"				
Supply	15" x 18"				
Return	19" x 19"				
Filter quantity and size	(1) 20" x 20"				
Shipping weight	48 Kg / 105 lbs				
Maximum cooling capacity		3 tons	<u> </u>	5to	ons

¹⁾ Can be increase or decrease by +10% or -10% using "CFM adjust" option on the control board. 2) Calculated on the basis of Norm C22.2 No.236

TABLE 3 Model with ECM motor ½ HP, air flow tables

	COOLING OR HEAT PUMP HEATING MODE (WITH HP-EFF SELECTED ▲) 24 VAC (R) input on G, Y/Y2 and O (for cooling)					
AC / HP SIZE Adjustment BLUE wire position	Adjustment A/C size AC/HP CFM ADJUST AC/HP CFM ADJUST AC/HP CFM ADJUST AC/HP CFM ADJUST					
36	3.0	1200	1080	1320		
30	2.5	1000	900	1100		
24	2.0	800	720	880		
18	1.5	600	540	660		

- ▼ In Cooling Dehumidification mode (with Jumper J1 remove), with no 24 VAC input to DH, the CFMs are reduced by 15%.
- ▼ The CFMs shown are reduced by 20% if there is 24 VAC input to Y1 only (Y/Y2 not powered)
 ▲ SYSTEM TYPE select to HP-EFF corresponds to 400 CFM/TONS HP-COMFORT corresponds to 350 CFM/TONS

	CONTINUOUS FAN 24 VAC (R) input on G only				
AC / HP SIZE Selection BLUE wire position	Selection A/C size CONTINUOUS FAN CONTINUOUS FAN CONTINUOUS FAN				
36	3.0	600	960	1200	
30	2.5	500	800	1000	
24	2.0	400	640	800	
18	1.5	300	480	600	
∆ CFM's when AC/HP CFI	M ADJUST at NO	M position. CFM's 10% lower or high	her if AC/HP CFM ADJUST at LO	or HI position.	

ELECTRIC HEATING MODE 24 VAC (R) input on W1 and/or W2 only				
HEAT KW/CFM adjustment RED wire position	POWER (Kw)	CFM First stage 24 VAC on W1*	CFM Second stage 24 VAC on W1 and/or W2*	
20	20	500	1000	
18	18	450	900	
15	15	400	800	
* Remove the Jumper J2 when a 2 stages thermostat is used				

ON & OFF DELAY FOR COOLING AND HEAT PUMP HEATING MODE					
ON / OFF DELAY Adjustment WHITE wire position	ON-Delay Time	OFF-Delay % CFM - Time			
0 / 90	0 sec.	100% - 90 sec.			
30 / 90	30 sec.	100% - 90 sec.			
0/0	0 sec.	0 sec.			
ENH	30 sec.	70 % - 150 sec.			

DELAY PROFILE FOR ELECTRIC HEATING MODE				
No adjustment	ON-Delay	OFF-Delay		
required	Time	% CFM - Time		
-	0 sec.	50% - 60 sec.		

TABLE 4 Model with ECM motor 1.0 HP, air flow tables

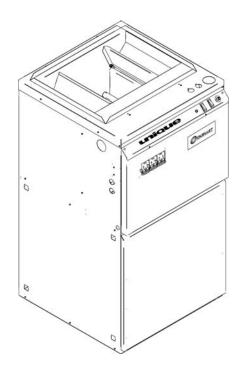
	COOLING OR HEAT PUMP HEATING MODE (WITH HP-EFF SELECTED ▲) 24 VAC (R) input on G, Y/Y2 and O (for cooling)					
AC / HP SIZE Adjustment BLUE wire position A/C size (TONS) A/C size (TONS) A/C size (TONS) CFM ▼ AC/HP CFM ADJUST BLACK wire position = (NOM) BLACK wire position = (LO) BLACK wire position = (HI)						
60	5.0	2000	1800	2200		
48	4.0	1600	1440	1760		
42	3.5	1400	1260	1540		
36	3.0	1200	1080	1320		

- ▼ In Cooling Dehumidification mode, with no 24 VAC input to DH, the CFMs are reduced by 15%.
 ▼ The CFMs shown are reduced by 20% if there is 24 VAC input to Y1 only
 ▲ SYSTEM TYPE select to HP-EFF corresponds to 400 CFM/TONS HP-COMFORT corresponds to 350 CFM/TONS

	CONTINUOUS FAN 24 VAC (R) input on G only				
AC / HP SIZE Selection BLUE wire position	A/C size (TONS)	CFM Δ CONTINUOUS FAN YELLOW wire position = (LO)			
60	5.0	1000	1600	2000	
48	4.0	800	1280	1600	
42	3.5	700	1120	1400	
36	3.0	600	960	1200	
Δ CFM's when AC/HP CFM	M ADJUST at NO	M position. CFM's 10% lower or higl	her if AC/HP CFM ADJUST at LO	or HI position.	

ELECTRIC HEATING MODE 24 VAC (R) input on W1 and/or W2 only				
HEAT KW/CFM adjustment RED wire position	POWER (Kw)	CFM First stage 24 VAC on W1*	CFM Second stage 24 VAC on W1 and/or W2*	
27	27	700	1400	
23	23	575	1150	
* Remove the Jumper J2 when a 2 stages thermostat is used				

ON & OFF DELAY FOR COOLING AND HEAT PUMP HEATING MODE							
ON / OFF DELAY Adjustment WHITE wire position	ON-Delay Time	OFF-Delay % CFM - Time					
0 / 90	0 sec.	100% - 90 sec.					
30 / 90	30 sec.	100% - 90 sec.					
0/0	0 sec.	0 sec.					
ENH	30 sec.	70 % - 150 sec.					


DELAY PROFILE FOR ELECTRIC HEATING MODE						
No adjustment ON-Delay OFF-Delay						
required Time % CFM - Time						
-	0 sec.	50% - 60 sec.				

Installation Instructions and Homeowner's Manual

Electric furnace

240 VAC POWER SUPPLY

Standard motor (PSC)

Models:

OFE10000GR

OFE15000GR

OFE18000GR

OFE20000GR

OFE23000GR

OFE27000GR-1H

INSTALLER / SERVICE TECHNICIAN:

USE THE INFORMATION IN THIS MANUAL FOR THE INSTALLATION AND SERVICING OF THE FURNACE AND KEEP THE DOCUMENT NEAR THE UNIT FOR FUTURE REFERENCE.

HOMEOWNER:

PLEASE KEEP THIS MANUAL NEAR THE FURNACE FOR FUTURE REFERENCE.

Caution: Do not tamper with the unit or its controls. Call a qualified service technician.

Manufactured by:

Industries Dettson inc. Subsidiary of Groupe Ouellet Canada Inc. 3400, boulevard Industriel Sherbrooke, Québec - Canada J1L 1V8

www. ouellet.com

1 800 463-7043

X40211 Rev.D 2013-04-05 **Printed in Canada**

TABLE OF CONTENTS

1.0	SAFETY	3
1.1	DANGER, WARNING AND CAUTION	3
1.2	IMPORTANT INFORMATION	3
1.3	DANGER OF FREEZING	3
2.0	INSTALLATION	3
2.1	POSITIONING THE FURNACE	4
2.2	CLEARANCES TO COMBUSTIBLE MATERIAL	4
2.2.	1. Heating unit	4
2.2.	2. Supply air ducts	4
2.3	CONFIGURATIONS	4
2.3.	1. Upflow installation	4
2.3.	2. Downflow installation	4
2.3.	3. Horizontal installation	5
2.4	ELECTRICAL SYSTEM	5
2.5	INSTALLATION OF THE THERMOSTAT	5
2.5.	Anticipator adjustment (if required) on thermostat equipped with heat anticipator adjustment	5
2.5.	2. Ducts and filters	6
2.6	SUPPLY AIR ADJUSTMENTS	6
2.7	INSTALLATION OF ACCESSORIES	7
2.7.	Humidifier and electronic air cleaner	7
2.7.	2. Use of a heat pump	7
3.0	OPERATION	7
3.1	START-UP	7
3.2	USE OF MANUAL FURNACE CONTROLS	7
3.3	OPERATING SEQUENCE	7
3.3.	1. Heating mode	7
3.3.	2. Cooling mode	8
3.3.	3. Continuous Fan speed	8
3.4	AIRFLOW VERIFICATION	8
3.4.	1. Supply Air Temperature Rise Test	8
3.4.	2. High limit verification	8
4.0	MAINTENANCE	8
4.1	AIR FILTER	8
4.2	MOTOR LUBRICATION	8
5.0	FURNACE INFORMATION	9
6.0	WARRANTY	9

TABLES

Table 1:	Supply air adjustment on heating mode6
Table 2:	Supply air adjustment on air cooling mode6
Table 3:	Technical specifications10
Table 4:	Airflow (CFM) - models with 1/3HP PSC
	motor10
Table 5 :	Airlfow (CFM) - models with 1HP PSC
	motor10
	FIGURES
Figure 1: L	Jpflow installation4
	Downflow installation4
	Horizontal installation5
-	-stage thermostat, electric heating only5
Figure 5: 2	2-stage thermostat, electric heating only5
Figure 6: 1	-stage thermostat with outdoor control for 2-stage
	function, electric heating only6
Figure 7: 1	-stage thermostat, electric heat and cooling
	application6
Figure 8: 2	2-stage thermostat, electric heating and air
	conditioning6
Figure 9 :	Furnace dimensions11
Figure 10	: Wiring diagram (10 kW)12
Figure 11:	: Wiring diagram (15 kW)13
Figure 12	: Wiring diagram (18 & 20 kW)14
Figure 13	: Wiring diagram (23 kW)15
Figure 14:	: Wiring diagram (27 kW)16

1.0 SAFETY

1.1 DANGER, WARNING AND CAUTION

The words **DANGER**, **WARNING** and **CAUTION** are used to identify the levels of seriousness of certain hazards. It is important that you understand their meaning. You will notice these words in the manual as follows:

DANGER

Immediate hazards which <u>WILL</u> result in death or serious bodily and/or material damage.

WARNING

Hazards or unsafe practices which CAN result in death or serious bodily and /or material damage.

CAUTION

Hazards or unsafe practices which <u>CAN</u> result in minor bodily and /or material damage.

1.2 IMPORTANT INFORMATION

A

WARNING

Non-observance of the safety regulations outlined in this manual will potentially lead to consequences resulting in death, serious bodily injury and/or property damage.

A

WARNING

Installation and repairs performed by unqualified persons can result in hazards to them and to others. Installations must conform to local codes or, in the absence of same, to codes of the country having jurisdiction.

The information contained in this manual is intended for use by a qualified technician, familiar with safety procedures and who is equipped with the proper tools and test instruments.

Failure to carefully read and follow all instructions in this manual can result in death, bodily injury and/or property damage.

- a. It is the homeowner's responsibility to engage a qualified technician for the installation and subsequent servicing of this furnace;
- Do not use this furnace if any part of it was under water. Call a qualified service technician immediately to assess the damage and to replace all critical parts that were in contact with water;
- Do not store gasoline or any other flammable substances, such as paper, carton, etc. near the furnace;
- Never block or otherwise obstruct the filter and/or return air openings;

- e. Ask the technician installing your furnace to show and explain to you the following items:
 - i. The main disconnect switch or circuit breaker;
 - The air filter and how to change it (check monthly and clean or replace if necessary);
- f. Before calling for service, be sure to have the information page of your manual close by in order to be able to provide the contractor with the required information, such as the model and serial numbers of the furnace.

IMPORTANT: All local and national code requirements governing the installation of central electric heating equipment, wiring and the flue connection MUST be followed. Some of the codes that may apply are:

ANSI/NFPA 70:

National Electrical Code

CSA C22.1 or CSA C22.10:

Canadian Electrical Code

Only the latest issues of these codes may be used, and are available from either:

The National Fire Protection Agency 1 Batterymarch Park Quincy, MA 02269

or

The Canadian Standards Association 178 Rexdale Blvd.

Rexdale, Ontario M9W 1R3

1.3 DANGER OF FREEZING

CAUTION

If your furnace is shut down during the cold weather season, water pipes may freeze, burst and cause serious water damage. Turn off the water supply and bleed the pipes.

If the heater is left unattended during the cold weather season, take the following precautions:

- Close the main water valve in the house and purge the pipes if possible. Open all the faucets in the house;
- b. Ask someone to frequently check the house during the cold weather season to make sure that there is sufficient heat to prevent the pipes from freezing. Tell this person to call an emergency number if required.

2.0 INSTALLATION

This furnace is a true multi-position unit, in that it will function in an upflow, downflow or horizontal configuration to the left or the right. Only a few modifications are required during installation to change from one position to another. The unit is shipped in the upflow configuration and instructions as to how to change to the other positions are included in this manual.

The unit requires a 240VAC power supply to the control panel, thermostat hook-up as shown on the wiring diagram and suitable air ductwork.

The louvers at air supply can be adjusted depending static pressure or desired airflow or temperature differential.

If the static pressure is high in the supply duct because of a large duct system or the addition of a cooling coil, it is suggested to close down the louvers until the noise or the vibration is decreased to a normal level. To limit the airflow or to increase the temperature differential, it is possible to close down the louvers. Open up the louvers to have the reverse effect. To adjust the louvers, push green levers and engage tack to another hole. It is suggested to place both louvers at the same position to insure uniform air distribution through the elements.

2.1 POSITIONING THE FURNACE

Fire and explosion hazard.

The furnace must be installed in a level position, never where it will slope toward the front.

Do not store or use gasoline or any other flammable substances near the furnace.

Non-observance of these instructions will potentially result in death, bodily injury and/or property damage.

CAUTION

This furnace is not watertight and is not designed for outdoor installation. It must be installed in such a manner as to protect its electrical components from water. Outdoor installation will lead to a hazardous electrical condition and to premature failure of the equipment.

If the furnace is installed in a basement or on a dirt floor, in a crawl space for example, it is recommended to install the unit on a cement base 2.5 cm to 5.0 cm (1" to 2") thick.

The unit must be installed in an area where the ambient and return air temperatures are above 15°C (60°F). In addition, the heater should also be located close to the center of the air distribution system.

2.2 **CLEARANCES TO COMBUSTIBLE MATERIAL**

2.2.1. **Heating unit**

The furnace is approved for zero clearance to combustible material regardless of the heating capacity.

2.2.2. Supply air ducts

Ducts for furnaces with a heating capacity up to and including 20 k W, can be installed with a zero clearance to combustible material.

Ducts for furnaces of 23 kW or more must have a clearance of 25 mm (1") to combustible material for the first 0.9 m (36") of duct. Thereafter the clearance can be zero.

Units of 23 kW and up, installed in the downflow position must use a OFE-SO downflow base, which is especially designed for this purpose. It ensures that the required clearances are being adhered to.

2.3 **CONFIGURATIONS**

This furnace requires suitable ductwork.

In upflow installation, the return duct may be installed to the back, on the left, or on the right of the unit.

In downflow or horizontal installation, the return duct may be installed to the back, on the left side, on the right side or under the unit.

In all configurations, the supply duct shall be installed on the top of the unit.

2.3.1. **Upflow installation**

The return duct may be installed to the back, on the left side or on the right side of the unit. Care should be taken not to damage the wires inside, while cutting the opening. Install the filter rack supplied with the unit according to the instructions provided with it. It is also recommended to install the blower door before handling or moving the unit. Refer to Figure 1 for additional details.

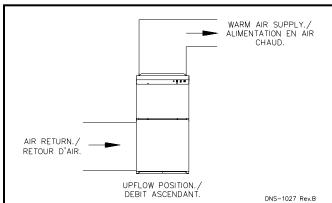
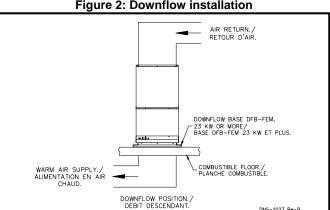


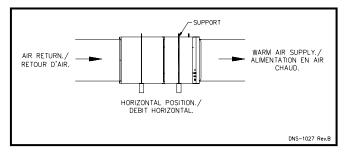
Figure 1: Upflow installation

2.3.2. **Downflow installation**

The return duct may be installed to the back, on the left side, on the right side or under the unit.

When the furnace is installed in the downflow position on a combustible floor, the clearances from combustibles materials must be adhered to. The downflow base OFE-SO can be used to ensure these clearances. Refer to Figure 2 and the installation instructions provided with the base.




Figure 2: Downflow installation

2.3.3. Horizontal installation

The return duct may be installed to the back, on the left side, on the right side or under the unit.

When the furnace is installed in the horizontal position, either suspended or on a combustible floor with a choice of right or left discharge, the clearances from combustible material must be adhered to. Refer to Figure 3 for additional details.

Figure 3: Horizontal installation

2.4 ELECTRICAL SYSTEM

The **Unique** furnace is completely pre-wired and all field wiring must be connected to the terminal blocks on the unit. It requires a 240 volt, 2-wire power supply.

A WARNING

Risk of fire.

The conductor sizing must conform to the last edition of the local or national codes.

Failure to follow this rule can result in death, bodily injury and/or property damage.

Power supply to the unit can be done using copper or aluminum wires. The wire size must be decided in accordance to unit power consumption, the over current protection type and capacity, the wire type and length, and the environment where the unit is installed. If an aluminum wire is used, other precautions must be taken to insure the conformity of the installation. In all cases, all the factors affecting the wire gauge must be considered and the installation codes followed.

The exterior of the unit must have an uninterrupted ground to minimize the risk of bodily harm. A ground terminal is supplied with the control box for that purpose. A connector is supplied on the ground terminal to ground an added accessory.

In the event that wires inside the unit require replacement, these must be copper wires only with same temperature rating as originals.

2.5 INSTALLATION OF THE THERMOSTAT

A thermostat must be installed to control the temperature of the area to be heated. Follow the instructions supplied with the thermostat. Some thermostat need to connect the C terminal on the furnace and thermostat. Install the thermostat on an interior wall in a location where it will not be subject to direct sun light, lamps, air diffusers, fireplaces, etc.

Seal openings in walls to avoid air currents that may influence the operation of the thermostat. Also refer to the wiring diagrams provided with the heating/air conditioning unit. The connections must be made as indicated on Figures 4 to 8 diagrams and on electrical diagram (Figure 10).

2.5.1. Anticipator adjustment (if required) on thermostat equipped with heat anticipator adjustment

Certain thermostats are equipped with a heat anticipator that must be adjusted according to the instructions supplied. This is to ensure that the heating mode is comfortable and economical.

Generally speaking, on a single stage thermostat, a reading of the current must be taken with an ammeter as follows:

- Move the anticipator to its highest setting, rendering it ineffective.
- 2. Remove the wire from the "W1" terminal and connect an ammeter between the terminal and the wire.
- Call for heat by raising the set point on the thermostat and allow the furnace to run for 3 to 4 minutes to reach its peak output.
- Once the current has stabilized, a reading should be taken and the anticipator adjusted to that value. If longer heating cycles are desired, the anticipator can be set to a higher value

Figure 4: 1-stage thermostat, electric heating only

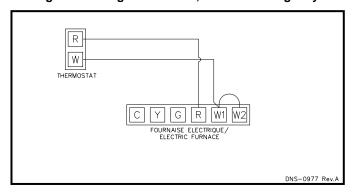


Figure 5: 2-stage thermostat, electric heating only

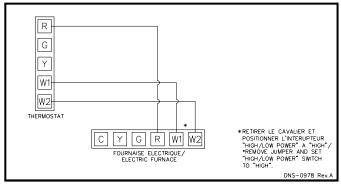


Figure 6: 1-stage thermostat with outdoor control for 2stage function, electric heating only

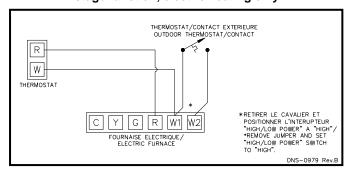


Figure 7: 1-stage thermostat, electric heat and cooling application

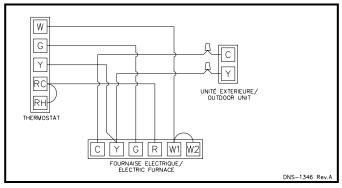
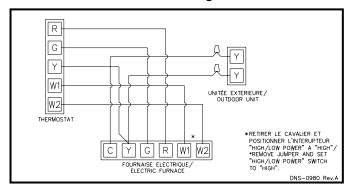



Figure 8: 2-stage thermostat, electric heating and air conditioning

2.5.2. Ducts and filters

The ducts must be sized such a way as to accommodate the specified airflow and the available static pressure. Refer to the applicable local and/or national installation codes.

Insulate the ducts that lead through non-heated areas. Use flexible supply and return air connectors to avoid the transmission of vibration. To make the unit run even quieter, the installer should:

- Use two elbows between each outlet and the supply and return air plenum;
- Cover the vertical sections of the supply and return air duct with soundproofing material;
- 3. Use baffles in short radius elbows;
- 4. Use flexible hangers to suspend the ducts.

The **Unique** furnace is equipped with a filter frame for the blower compartment. It must be installed on the outside of one of the three sides or the bottom of the furnace. Once the location of the installation has been determined, use the four square knockouts for ease of cutting the opening.

A heat pump or an air conditioner can be added to this furnace, in either the supply or return air duct. Carefully follow the instructions provided with these appliances to ensure proper installation and hook-up to the electric furnace. Refrigerant and drainage pipes must in no way hinder access to the furnace panels.

2.6 SUPPLY AIR ADJUSTMENTS

On units equipped with 4-speed blower motors, the supply air must be adjusted based on heating/air conditioning output and the static pressure of the duct system. For the desired airflow, refer to the Table 1 and 2, as well as the Tables 4 and 5 for the airflow based on static pressure.

For the adjustment of the airflow on heating mode, to obtain the temperature rise described in the technical specification table (Table 3), the orange wire must be positioned on the terminal corresponding to the LOW, MED-LOW, MED-HIGH or HIGH blower speed. Blower speeds are adjusted in factory for 0.5 inch static pressure.

For the adjustment of the airflow on air-cooling mode, to obtain a sufficient airflow (350 to 450 CFM per Ton), the blue wire must be positioned on the terminal corresponding to the LOW, MED-LOW, MED-HIGH or HIGH blower speed. Blower speeds are adjusted in factory for 0.5 inch static pressure.

Table 1: Supply air adjustment on heating mode

	117 7				
Furnace	Input Power KW	HP Motor	Static Pressure (in. w.c)	Recommended Blower Speed	
OFE10000GR	10	1/3	0.2	LOW	
OI L 10000OK	10	1/3	0.5	LOW	
OFE15000GR	15	1/3	0.2	MED-LOW	
OFETSOOGK	2	1/3	0.5	MED-LOW	
OFE18000GR	18	1/3	0.2	MED-LOW	
OFETOUUGK			0.5	MED-LOW	
OFE20000GR	20	1/3	0.2	MED-LOW	
OFEZOOOGK	20	1/3	0.5	MED-HIGH	
OFE23000GR	23	1/3 0.2 [MED-HIGH		
OFEZSUUGK	23	1/3	0.5	MED-HIGH	
OFE27000GR-1H	27	1.0	0.2	MED-LOW	
OFE2/000GR-1H	21	1.0	0.5	MED-LOW	

Table 2: Supply air adjustment on air cooling mode

Furnace	HP Motor	Cooling Capacity (0.5" w.c.)	Recommended Blower Speed	
		1.5	LOW	
OFE 10, 15, 18, 20 and 23 kW	1/3	2.0	MED-LOW	
	1/0	2.5	MED-HIGH	
		3.0	HIGH	
OFE 27 kW		2.5	LOW	
		3.0	MED-LOW	
	1.0	3.5 MED		
		4.0	HIGH	
		5.0	HIGH	

If the heating and air-cooling speed are the same, the orange wire and the blue wire can be connected on the same terminal on the motor.

WARNING

Electrical shock hazard.

Turn OFF electrical power at the fuse box or service panel before making any electrical connections and ensure a proper ground connection is made before connecting line voltage.

Failure to do so can result in death or bodily injury.

2.7.1. Humidifier and electronic air cleaner

This unit is equipped with a 120 VAC terminal for the connection of accessories up to a maximum of 2 amps. To use this function, a 3-wire 120/240 VAC power supply is required on the unit. A humidifier and an electronic air cleaner can be wired to terminals "1" and "2" of the unit. Refer to the wiring diagrams in this manual. A field supplied 240/24 VAC transformer can be installed for accessories using 24 VAC. A separate power source must be used if the accessories draw more than 2 amps.

Certain accessories require control relays. A location has been set aside in the unit for the installation of relays: a 24 VAC (part number L01H009). In addition, a 24 VAC relay can be wired between terminals "W1" and "C" to be activated during a call for heat. Refer to the wiring diagrams for the location of the relay (RAcc) on the control panel.

2.7.2. Use of a heat pump

When using a heat pump, a thermostat with dial fuel option or a fossil fuel kit is required that prevents the operation of the electric elements and the heat pump at the same time. Refer to the instructions provided with the thermostat or the "Fossil Fuel" kit for the proper wiring of the furnace and the heat pump.

The simultaneous operation of the electric elements and the heat pump will cause overheating of either unit. The safety controls of the appliances will shut down the elements or heat pump, since they are not designed to function in this fashion.

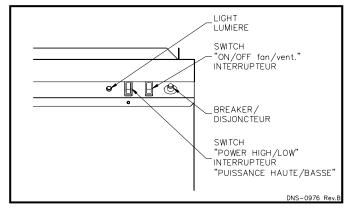
3.0 OPERATION

3.1 START-UP

Before starting up the unit, be sure to check that the following items are in compliance:

- 1. The electrical installation and ventilation;
- The blower access door is in place and the blower rail locking screws are well tightened;
- The blower speed adjustments for heating and air conditioning are appropriate and according to the specifications in this manual;
- 4. The thermostat of the room is in the heating mode and is set higher than the ambient temperature.
- 5. The breakers on front panel are closed (green indicator)

To start the unit, turn the main electrical switch on.


3.2 USE OF MANUAL FURNACE CONTROLS

When there is a demand for heat, the pilot light ("L-1") comes on. Refer to the wiring diagram.

When the "HI/LO" switch is put into the "LO" position, it will shut down approximately half the elements.

However, it is important to put the switch back to the "HI" position during the winter months to ensure adequate heating.

Figure 8: Manual Furnace Controls

Also, this switch must remain in the "HI" position when a 2-stage or outdoor thermostat is used to control the electric elements of the second stage. Refer to the diagram in Section 1.5) above (Typical 24 VAC Wiring, Thermostat).

The "ON/OFF VENT/FAN" switch engages the blower in the continuous speed mode. This will filter the air and provide for better air distribution in the building.

The circuit breaker is there to protect the motor and control circuit conductors. If the unit does not function, press the circuit breaker button to see if it may have disengaged due to a power surge. If the breaker has to be pressed again, the unit must be checked by a qualified service technician.

3.3 OPERATING SEQUENCE

3.3.1. Heating mode

- 1. The thermostat closes the R-W1 circuit (24 VAC), thereby activating the first 22 VDC relay passing by a rectifier control. Without delay, the 1st heating element is activated and the blower starts at low speed. On 15 kW unit power and more, a 2nd relay is activated after 8 seconds delay to start a 2nd element. On 23 kW unit power and more, a 3rd relay is activated after 8 second delay to start a 3rd element.
- 2. The thermostat closes the R-W1 & W2 circuit (24 VAC), thereby activating others 22 VDC relays passing by a rectifier/timer with 8 seconds delay between each one. The heating elements of the second stage are activated in sequence after the 8 seconds delay between each. The 24 VAC relay of the heating speed is also activated and heating blower speed start.

3.3.2. Cooling mode

- The thermostat closes the R-G circuit, thereby activating the 24 VAC R-1 relay. The blower starts up to cooling speed.
- 2. The thermostat closes the R-Y contact, thereby activating the compressor relay of the air conditioner.

3.3.3. Continuous Fan speed

The blower will also start up to cooling speed by way of the "Fan" switch on the thermostat.

3.4 AIRFLOW VERIFICATION

Verify the airflow by taking readings of the following points, while the elements are in the heating mode:

- a. Total amperage of all the heating elements;
- b. Voltage at the furnace;
- c. Supply air temperature. The point of the reading must not be affected by radiant heat from the elements;
- d. Return air temperature.

From these readings, one can arrive at an approximate calculation of the average airflow. To do that, the following formula should be used:

CFM = 3.1 x amps. x volts

Diff. temperature °F

3.4.1. Supply Air Temperature Rise Test

- Operate the unit at maximum power for at least 10 minutes;
- 2. Measure the air temperature in the return air plenum;
- Measuring the air temperature in the largest trunk coming off the supply air plenum, just outside the range of radiant heat from the heat exchanger. 0.3 m (12") from the plenum of the main take-off is usually sufficient;
- The temperature rise is calculated by subtracting the return air temperature from the supply air temperature.

If the temperature rise exceeds the temperature specified $(\pm 5^{\circ}F)$ in Table 2, move the "AC/HP CFM ADJUST" black wire to high (HI) position. If the excessive temperature rise cannot be reduced by increasing fan speed, investigate for ductwork obstructions or dirty and improper air filter.

CAUTION

It is important to check the airflow and to ascertain that the unit does not operate above the temperatures specified in the Technical Specifications (Table 2). This is particularly important if a cooling coil or a heat pump has been installed in the ducts.

Hi-Limit thermal protectors should never need to engage during the normal functioning of the appliance. They are strictly designed to engage during the improper functioning of the blower or when the filter was improperly maintained.

3.4.2. High limit verification

After operating the furnace for at least 15 minutes, restrict the return air supply by blocking the filters or the return air register and allow the furnace to shut off on High Limit. The electric heaters must deactivate themselves one by one before the warm air temperature exceeds 200°F

Remove the obstruction and the elements should restart after a few minutes.

4.0 MAINTENANCE

A WARNING

Electrical shock hazard.

Turn OFF power to the furnace before any disassembly or servicing. Failure to do so can result in death, bodily injury and/or property damage.

Preventive maintenance is the best way to avoid unnecessary expense and inconvenience. Have your heating system inspected by a qualified service technician at regular intervals. Do not attempt to repair the furnace or its controls. Call a qualified service technician.

Before calling for repair service, check the following points:

- 1. Check fuses or the circuit breaker;
- Check if the 15 A circuit breaker on the furnace is disengaged;
- Set the thermostat higher than room temperature. If the unit does not start up, cut the power and call la qualified service technician.

When calling for service or ordering a replacement part, specify the model and serial number of your appliance.

4.1 AIR FILTER

The filter supplied with the unit is the disposable type and should be replaced twice a year. The presence of animal hair, dust, etc. may necessitate more frequent changes. Dirty filters have an adverse effect on the performance of the central heating system.

4.2 MOTOR LUBRICATION

Do not lubricate the blower motor, since it is permanently lubricated.

5.0 FURNACE INFORMATION

Model:	Serial number:	
Furnace installation date:		
Service telephone # - Day:	Night:	
Dealer name and address:		
START-UP RESULTS		
Voltage:		
Total current consumed by the elements:		
Supply air temperature:		
Return air temperature:		
Supply air duct static pressure:		
Return air duct static pressure:		
Total pressure:		
Calculated air flow:		
Current consumed by the blower motor:		
Current consumed by the accessories:		

6.0 WARRANTY

LIMITED WARRANTY TO OWNER

The warranties herein set forth are in lieu of all other warranties expressed or implied and shall not apply to any accessory not part of the product. Ouellet Canada Inc. warrants its **Unique** electric furnace to the owner against defects in material and workmanship for a five (5) year period under normal use and services following date of purchase when proof of such is provided to seller. The obligation of Ouellet Canada Inc., under the terms of this warranty, shall be to supply a new part, or the repair of a defective part at the company's option with no cost to owner for the new or repaired part. Such parts are to be returned to the factory, or such other location as the company may designate at the owner's expense. This warranty does not obligate Ouellet Canada Inc. to bear the cost of labor in replacing any assembly, unit or component part thereof, nor does the company assume any liability for secondary charges, expenses for installing or removal, or any other consequential losses, freight or damages.

IN CASE OF PRODUCT FAILURE

It shall be the obligation of the owner or contractor to furnish to the company, within the designated warranty period the following information:

- 1. Model Number and serial number of product involved.
- 2. Complete description of the problem encountered with product.

7.0 TECHNICAL SPECIFICATIONS

Table 3: Technical specifications

RATINGS AND PERFORMANCE								
Power, total (Kw)	10	15	18	20	23	27		
Power, first stage (Kw)	5	10	9	10	13	15		
Net capacity (BTU/h)	34 120	51 180	61 420	68 240	78 480	92 130		
Heating temperature rise range (F) 1	40-50	45-60	50-75	55-75	60-80	60-80		
ELECTRICAL SYSTEM						-		
Volts - Hertz - Phase			2 wires	240 - 60 - 1				
Electrical element #1 (Kw)	5	5	4	5	4	5		
Electrical element #2 (Kw)	5	5	5	5	5	5		
Electrical element #3 (Kw)		5	4	5	4	5		
Electrical element #4 (Kw)			5	5	5	4		
Electrical element #5 (Kw)					5	4		
Electrical element #6 (Kw)						4		
Blower motor Consumption (Amp. Max.)	3.3	3.3	3.3	3.3	3.3	6.9		
Heating Elements Consumption (Amp)	41	61	74	82	94	111		
Total Consumption (Amp)	44.3	64.3	77.3	85.3	97.3	117.9		
Circuit Amperage (wire sizing) ²	55	80	97	107	122	147		
Maximum size circuit breaker (Amp) 2	60	80	100	110	125	150		
BLOWER DATA (factory adjusted to a staic pre			_	_	_			
Blower speed at 0.50" W.C. static pressure	LOW	MED-LOW	MED-LOW	MED-HIGH	MED-HIGH	MED-LOW		
Blower speed at 0.20" W.C. static pressure	LOW	MED-LOW		MED-LOW	MED-HIGH			
Motor (HP) / number of speeds		1/	/3 HP / 4 spe	eds		1 HP / 4 speed		
Nominal blower size (diam. X width)			10 x 8			12 x 10		
GENERAL INFORMATION								
Overall dimensions (width x depth x height)				20" x 36.5"				
Supply				5" x 18"				
Return	19" x 19"							
Filter quantity and size				20" x 20"				
Shipping weight				g / 105 lbs				
Maximum cooling capacity	3 tons 5 tons							
1) Select a blower speed that will generate the spe 2) Calculated on the basis of Norm C22.2 Nr. 236	cified tempera	ture rise						

Table 4: Airflow (CFM) - models with 1/3HP PSC motor

Blower Speed			Ç	Static Pressur	е		
	0.1	0.2	0.3	0.4	0.5	0.6	0.7
LOW	715	700	690	675	660	650	635
MED-LOW	935	900	870	835	800	770	735
MED-HIGH	1090	1050	1010	970	930	890	850
HIGH	1285	1250	1220	1185	1150	1120	1085

The airflow values are expressed in cubic feet per minute (CFM), rounded to 5 CFM more or less.

These readings were taken with the air filter installed.

Table 5: Airlfow (CFM) - models with 1HP PSC motor

Player Speed			Ş	Static Pressur	е		
Blower Speed	0.1	0.2	0.3	0.4	0.5	0.6	0.7
LOW	1035	1030	1030	1025	1020	1020	1015
MED-LOW	1315	1300	1285	1270	1255	1240	1225
MED-HIGH	1715	1650	1590	1525	1460	1400	1335
HIGH	1935	1900	1870	1835	1800	1770	1735

The airflow values are expressed in cubic feet per minute (CFM), rounded to 5 CFM more or less.

These readings were taken with the air filter installed.

Figure 9 : Furnace dimensions

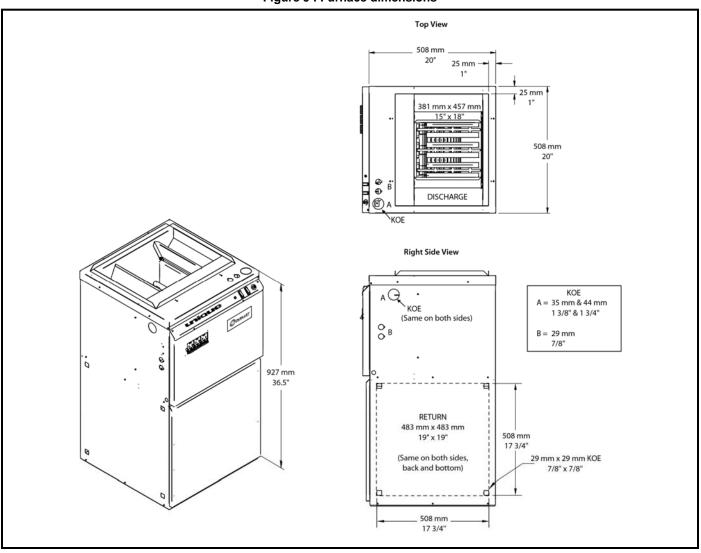


Figure 10 : Wiring diagram (10 kW)

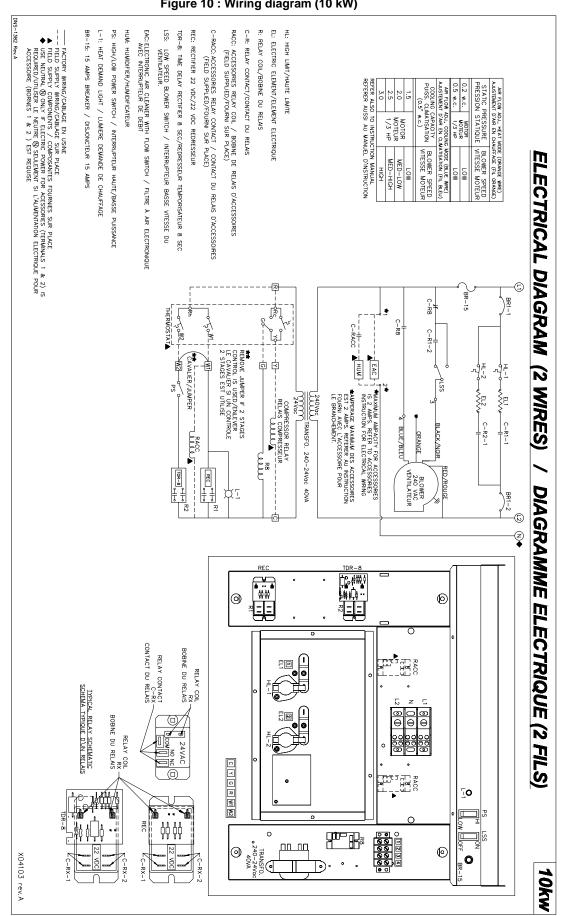


Figure 11: Wiring diagram (15 kW)

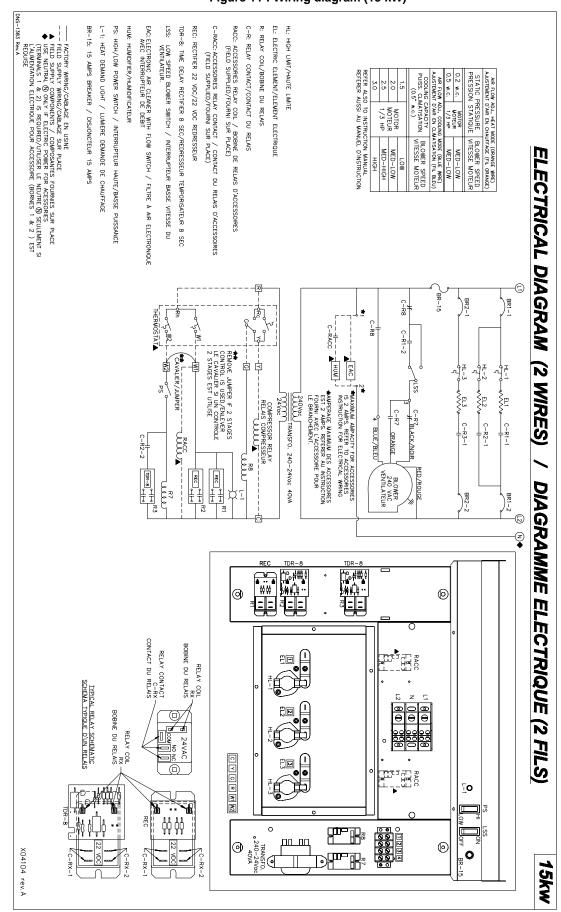
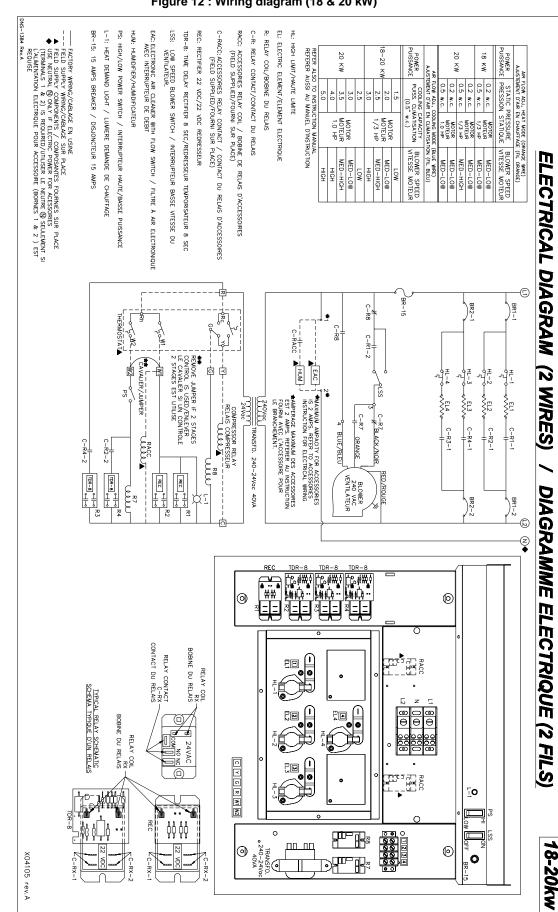



Figure 12: Wiring diagram (18 & 20 kW)

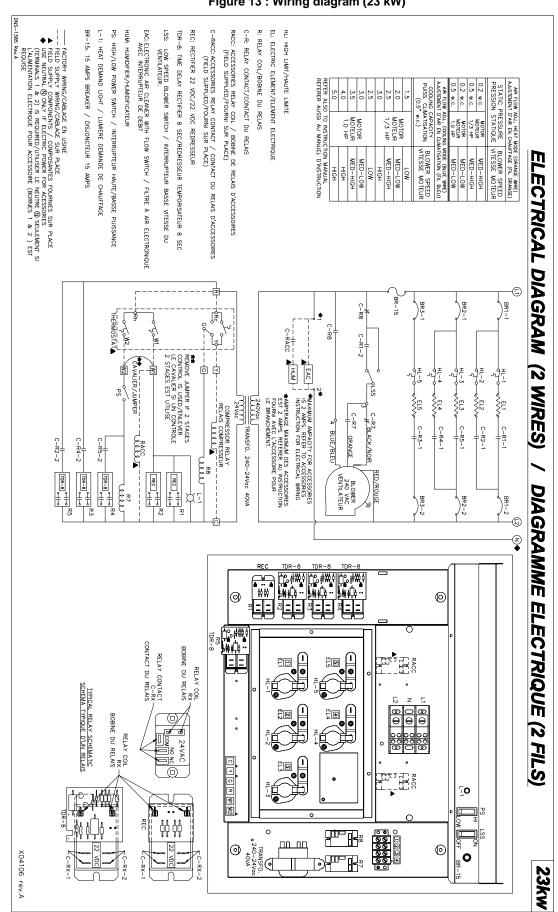
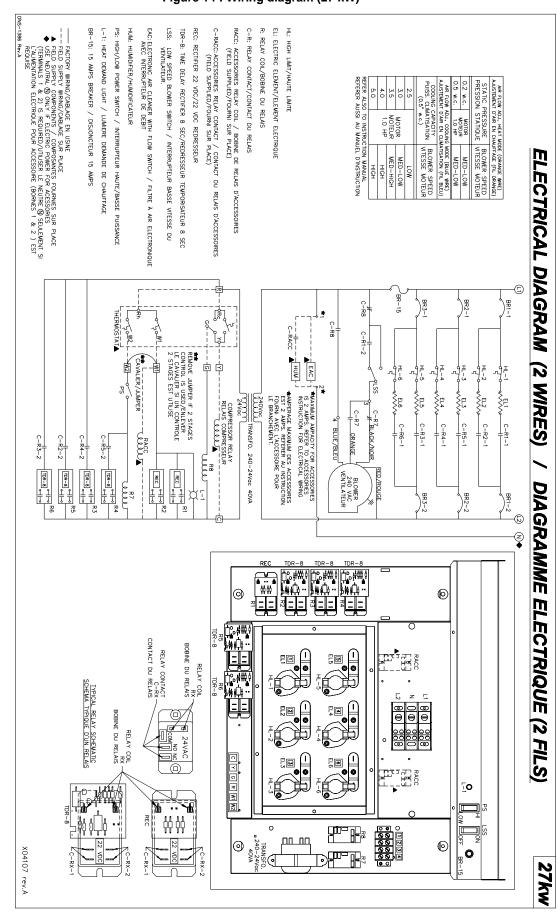



Figure 14: Wiring diagram (27 kW)

